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INTRODUCTION
The author and his colleaques have analyzed biomechanical data --
especially cadaver impacts ~-- for a number of vyears. As other

researchers would critique the approach taken in that work, the methods
of analysis broadened and changed over the years. Some changes were due
to a reconsideration of the validity of the mathematical method which
was being employed. For example, regression analysis is designed for a
dependent variable which is continuous and has a nominally linear
relationship with the independent variables; but the AIS (a measure of
injury frequently employed in biomechanical analyses) is neither a
continuous variable nor a linear descriptor of injury outcome.

Other changes in the approach to analysis were due to a deeper
reflection upon the way in which the biomechanical experiments are
conducted. In most biomechanical experiments, the specimen is tested in
a "one shot" fashion at one particular velocity or force level but not
at progressively increasing values from zero up to the measured velocity
or force. Biomechanical experiments are not 1like "light bulb
experiments" where one starts with a thousand light bulbs turned on at
day one and leaves the bulbs on continuously in order to record the time
at which each bulb burns out. In other words, the independent variables
(viz, force measured in dynamic experiments on bone shafts or velocity
measured in pendulum impacts to the +thorax) are not ‘'excited "
continuously from "zero" to the point where the value of the independent

variable is recorded.
recent paper (11 which discussed the manner in which

biomechanical experiments are conducted is by Ran, Koch, and Mellander
of the Volvo Car Corporation in Goteborg, Sweden. This paper pointed
out that statisticians refer to data which has a known bias as censored
data. Censored data are frequently treated by statisticians using the
Maximum Likelihood Method. The Maximum Likelihood Method and the
Weibull Distribution are wused in the Volvo paper to analyze several
typical biomechanical problems.

Having read the Volvo paper on the Maximum Likelihood Method and the
Weibull Distribution, the author decided to apply the method suggested
by Volvo to familiar biomechanical problems previously solved by other
methods. The purpose of this paper is to apply the method used by Volvo
to additional data sets and share an assessment of the success of the
approach.

REVIEW OF APPROACH

The Volvo paper uses the Weibull Cumulative Distribution Function
and interprets it as the probability of a response (such as the
occurrence of an injury of severity AIS >= 3) given a specific value of

* Numbers in brackets designate references at end of paper.
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the independent explanatory variable. The Weibull Cumulative Distribution
Function has the form
B
- [z =Yl
W(z30uRs )= 1 - e

where z is the independent variable (which is the laboratory measured or
processed variable and has a bias because of the manner in which the
experiment is set-up,e.g., the experimental velocity is forced to fall in
the band and or bands of interest) and & , 3, and /J are parameters to be
determined. The Weibull Function might be interpreted as the probability
of bone fracture as shown in Figure 1. The symbol W denotes the
particular cumulative distribution function which is the Weibull Function
and the symbol F denotes a general cumulation distribution function for
which no assumption has been made about the underlying population.
Reference 2 is a good Weibull Function introductory text with an
engineering point of view.
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Figure | - Weibull Function is Interpreted as Probability of
Response (Fracture).

The method sugpested by Volvo begins with a plot of all-or-nothing --
or quantal -- responses versus the biased independent variable as shown in
Figure 2. In this example there are four data points -- two non-fractures
and two fractures -- corresponding to the biased independent variables
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D £ LY & and Z4. Since the assumed probability of a fracture at
is"'W(ZY) -= where W(Z) is a shortened notation for the Waibull
function UJZ:GLB$J) -= then the probability of a non-fracture is 1 - W(Z).

It follows that the probability of the occurrence of the four data points
in Figure 2 is :

Z13
Zy

Lo= 01 = WZPI01 = WZ2) W23 10W(Z4]

where L is referred to as the likelihood function. The &, A3, and J are
then found which maximize L. The maximized L is called the Maximum
Likelihood Function. In other words, the method suggested by Volvo chooses
from among all the possible values of Q ,B,and J those three values that
maximize the probability of obtaining the sample that was obtained.

FRACTURE | o0
NON - . \
FRACTURE | (O D, .

2 22 23 2% INDEPENDENT VARIABLE 2

: A A 4
L= [1-F(29)111-F(22) 1[F(Z3)1(F(24)]

L = LIKELIHOOD FUNCTION

Figure 2 - Explanation of Approach used in Reference 1.

The probability of a fracture is then a plot of WZ,2.80) --
where Q ,B , and ¥ are those which maximized L -- versus Z.

The method is statistical in nature. One of the more concise
statements of the connection between quantal data and the statistical
approach is by Finney [3]:

" When the characteristic response is quantal,it's occurrence or
non-occurrence will depend upon the intensity of the stimulus
applied. For any one subject, under controlled conditions, there
will be a certain level of intensity below which the response
does not occur and above which the response does occurji in
psychology such a value is designated the threshold s But: in
pharmacology and toxicology the term +tolerance seems more
appropriate. This tolerance value will vary from one member to
another of the population wused, frequently between quite wide
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limits. When the characteristic response is quantitative, the
stimulus intensity needed to produce a response of any given
magnitude will show similar variation between individuals. In
either case, the value for an individual is likely to vary from
one occasion to another as a result of uncontrolled internal or
external conditions....

For quantal response data it is therefore necessary to consider
the distribution of tolerances over the population studied. If
the dose, or intensity of the stimulus, is measured hy,l, the
distribution of tolerances may be expressed by

dF= F(dA s

this equation states that a proportion,dF ,of the whole
population consists of individuals whose tolerances lie between
‘l and Aot q&, where dA represents a small interval on the dose
scale, and that dF is the length of this interval multiplied by
tti appropriate value of the distribution [density] function,
flA).

If a dose A.g is given to the whole population, all
individuals will respond whose tolerances are less than o, and

the proportion of these is F, where
e

("]
F = HOREP I
~ 0
the measure of dose is here assumed to be a quantity which can
conceivably range from zero to plus infinity, response being
certain for very high doses so that

f;‘l’d,{' .

The distribution of tolerances, as measured on the natural
scale, may be markedly skew...."

The Weibull Function/Maximum Likelihood method was programmed on a UAX
11/78@0 (a minicomputer) using an optimization routine out of the IMSL
library (4] to find the values of (¥,[3, and ) which maximize L. The
program was then validated against known’ solutions in the literature and
in particular against the recorded values of Cz,}g, and a’in Reference 1.

METHOD APPLIED TO SIDE IMPACT ANALYSIS

Having the Maximum Likelihood Method and Weibull Distribution method
up and running on the computer, the first step was to revisit a previous
analysis in the side impact area [S5]. Basically, Reference 5 concerns the
investigation of a functional relationship between the intensity of the
mechanical input to B1 cadavers and the injury as measured by the AIS
scale. The signals from 12 of the cadaver tests did not pass quality
control such that only 49 were used in the actual analysis. Reference S
analyzed these 49 cadaver tests using the "Probit Procedure® [6] which
determines the best cumulative distribution function based on the
assumption the underlying population has a normal distribution. The
results " of the analysis of Reference 5 are shown in Figure 3. (The
independent variable in Figure 3, the Thoracic Trauma Index, is dependent
on: (1) age, (2) upper rib acceleration, (3) 12th thoracic vertebra
acceleration, and (4) mass, The development of this parameter is
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ssed in Reference 5. For the purpose of the current paper, look at
TTI as an independent parameter and avoid asking what it is.) Figure
ots the three Probit solution curves where the all-or-nothing response
efined respectively as AISIHT »>= 3, >= 4, and >= 5. (The injury
sis efforts related thoracic response to the resulting injuries. The
was for all lesions ocurring to anatomical structures on or within the
cic cage. This concept includes such organs as the liver, kidney,
spleen, which by the conventional AIS definition are abdominal
8. To distinguish this classification from the conventional AIS
g scheme, the acronym AISHT has been assigned. AISIHT represents the
of highest hard thoracic AIS which was observed.) As can be seen,
t inconsistences exist at the high end of the AISIHT >= 3 and AISIHT
curves as well as at the low end of the AISIHT >= 4 and AISIHT >= §
s in Figure 3. Also, the Probit Procedure used for Figure 3 assumes
the wunderlying injury population is normal with respect to the
endent wvariable, TTI, but no evidence exists to take this as a given.
well does the Maximum Likelihood approach with the Weibull
ibution Function treat the same data set? To simplify the analysis,
AISTHT curves >= 3, >= 4, and >= 5§ will be discussed separately and in
nce.

e

A1S>=5
AlS>=3

I I

0 50 100 150 200 250

TTI=1.4(AGE)+0.5(LURY+T12Y)*MASS/ 165

Figure 3 - Injury Risk vs. TTI from Reference 5.
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The old normal analysis (Probit Analysis) and the Weibull approach are
compared in Figure
curve. One question

greater maximum
value of 4.9 =

approach does a better job.
probability density functions

which
likelihood

methods give roughly the same probability
could be asked is, " Which method gives the

function 7" The normal appﬁoach gives an L
the Weibull an L of 2.0 * 1078150 the Weibull

Another question to be asked is, " How do the
of the two methods compare 7*

100 2= /
80 .-
80—,
40 _|
] WE IBULL
20" /
uonmn.7
= v
0
| | 1l | | I I ! I I T I i T ] I 1 r
50 100 150 200 250

1.4(AGE)+0.5(LURY+T12Y) *MASS/ 165

Figure 4 - Injury Risk of AIS >= 3 vs. TTI.
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F(Z)

Recall from the Finney excerpt that there is a function F(Z) which
gives the percentage responding against an exposure by a steadily rising
curve having a sigmodal shape as shown in Figure 5. Big F(Z) is called
the cumulative distribution function by statisticians. Big F(Z) was
arrived at by integrating small f(Z) which is called the probability
density function by statisticians. Small f(Z) as shown in Figure 6 should
be interpreted such that the area between any two ordinates represents the
proportion of subjects having tolerances between these limits.

rd

FI(Z) = Jf flx)dx
0

Figure S - Function F(Z) Gives Percentage Responding Against an
Exposure Z.
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TTI = 1.4(AGE)+0.5(LURY+T12Y)*MASS/ 165

Figure 7 - Probability Density Function for AIS >= 3 vs. TTI.

The same data when reanalyzed using AISIHT >= 4 as the all-or-nothing
response (quantal response) results in Figure 8. In this instance, the
probability curves (cumulative distribution functions) for the Probit and

Weibull approach are beginning to aeparata slightly. The maximum
likglihood for the Probit is 3.1 * 10~/ and for the Weibull is 4.3 +
1073, The probability density Ffunctions for the Probit and Weibull are

shown in Figure 8. Both look normal but the underlying populations are
starting to diverge.
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Figure 8 - Injury Risk of AIS >= 4 vs. TTI.
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Figure 8 - Probability Density Function for AIS >= 4 vs. TTI.
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Figure B - Function f(Z) Represents the Proportion of Subjects
Having Tolerances Between Z and 7 + dZ.

It follows that the Weibull probability density function 1is the
derivative of the Weibull cumulative distribution function which is:

) B
-[¢Z - J)/Q] g-1
f(Z) = @ (gr@It(z -y .

The comparison of the probability density function for AISIHT >= 3 for the
Probit and the Weibull function approach is shown in Figure 7. For this
case, the Weibull function takes a form that has an underlying population
which is nearly normal. A reasonable person would conclude there is little

to be gained by selecting the Welbull method over the Probit approach in
this instance.
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Finally, the side impact data was analyzed using AISIHT >= S as the
criteria for the quantal response. The cumulative distribution functions

are shown in Figure 1@; the probability curves are definitely different.
The maximum l%ke ihood for the Probit is 1.7 #» 18~/ and for the Weibull
is 2.7 = 10°/. The juxtaposition of the two methods in the probability
density function versus independent variable format of Figure 11 shous

that the Weibull underlying population is skewed to the right.

10—

5 -—WE IBULL

0 100 200 300 400 500 600
TTI = 1.4(AGE)+0.5(LURY+T12Y)*MASS/ 165

Figure 10 - Injury Risk of AIS »>= 5§ vs, TTI.
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Figure 11 - Probability Density Function for AIS >= 5 vs, TTI.
Figure 12 plots the three Weibull solution curves for the
all-or-nothing response defined respectively as AISIHT >= 3, >= 4, and >=
5. Note that logical inconsistencies at the heads and tails of the Probit
method solutions are hardly present in the Weibull method solutions. For
the examples presented in this section of the paper, the maximum
likelihood for the Weibull approach is slightly greater to greater than
that for the Probit approach. Finally, unsubstantiated assumption of an
underlying normal population is not required by the Weibull approach. For

this side impact cadaver data set, the Weibull approach is superior.
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Figure 12 - Injury Risk vs. TTI, Weibull Solution.

METHOD APPLIED TO FRONTAL PENDULUM DATA

finother source of cadaver data are the blunt frontal pendulum impacts
frequently referred to as the Kroell Data and sponsored by General Motors
[7-39]. A subset of this data —— 24 tests -- was analyzed by Neathery et
al. using regression techniques [10]. The final equation developed was

AIS = 17.4338 P/D + 0.03128 Age - 5.1508

where P is chest penetration,

D is chest depth,

Age is in years,

and the multiple correlation coefficient, R, is 0.87.
The constant AIS lines (derived by setting the AIS variable in the above
equation from Reference 10 equal to the particular AIS number to be the
constant) are overlayed on the cadaver data points in Figure 13. Three
things are evident. First, at the higher AIS levels, the AIS = 4, 5, and
6 data points appear to group together as the constant AIS lines move
away -= in a linear fashion =-- from the grouping. In other words the
equation starts to lose its predictive capability as P/D increases beyond
about .42 as was first pointed out by Viano [11]. Second, at the lower
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AIS levels, the @'s and the 2's are near their respective constant AIS
lines. On the other hand, 1's and 3's are grouped around the AIS = 2
line. Third, the AIS = 3 line reasonably separates the AIS <= 3 data
points from the AIS > 3 data points.

0.0 | I I I I l I i

I [ L T Ty RRE ki BT ] L
10 20 30 40 50 60 70 80 90
AGE
Figure 13 - Constant AIS Lines on Data from Reference 10.
The same data when analyzed by the Weibull approach -- where the

criteria for response and non-response is AIS > 3 and AIS (= 3
respectively =-- results in the probability curve of Figure 14. The
Weibull approach shows that the tolerance to AIS > 3 goes through a
transition about the region where the equation of Reference 10 predicts
the AIS 1{s equal to 3. Basically, the Weibull approach shows the salient
behavior of the cadaver data without running the risk of inaccurately
predicting at the lower and highar values of the AIS.
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Figure 14 - Injury Risk vs. Neathery's Equation.

METHOD APPLIED TO HEAD INJURY CRITERIA DATA

In the Volve paper, Reference 1, is an example using the Weibull
Function/Maximum Likelihood approach on 54 cadaver head impact tests. The
original cranial fracture data is taken from Reference 12. Using our
in-house computer program, a solution identical to Volvo's was found.
That Weibull Cumulative Distribution Function is found in Figure 15 with
the label "Original HIC Data." Subsequently, Dr. Priya Prasad of Ford
Motor Company found in the original literature that six of the tests
labeled not skull fractures were in fact fractures. The Weibull
simulation was rerun with the corrections and a new solution was found
which 1is labelled "Corrected HIC Data" in Figure 15. The S5@th percentile
probability region is found at about a 1500 HIC level with the original
data but is shifted to around a 1000 HIC with the correctad data. The
point of this exercise is that the Weibull Function/Maximum Likelihood
approach lends itself readily to sensitivity studies.
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CONCLUSIONS

The first conclusion is that it it a relatively simple task to
implement the Weibull Cumulative Distribution Function/Maximum Likelihood
approach given the availability of commercial support sofiware and small,
fast computers with large memory.

The second conclusion pertains to the comparison of the Probit Method
with the Weibull Method for the analysis of a side impact cadaver data
set. The Probit analysis leads to probability curves which have
inconsistent high and low values when considering different levels of AIS
values. The Weibull approach leads to probability curves which have a
smoother transition at the high and low ends.

The third conclusion is that if the Maximum Likelihood is taken as the
criteria of merit, then the Weibull approach has a higher Maximum
Likelihood value than the Probit approach for our examples.

The fourth conclusion is that the Weibull approach readily allows for
variation of the independent variables to determine the impact on the
probability curve(s).
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